Una Nota sobre la Maximización del Bienestar Social en Redes de Transporte
Resumen
Usando una función de bienestar social del tipo BergsonSamuelson mostramos que una asignación a costo marginal (basada en el segundo principio de Wardrop), pese a minimizar los costos totales del sistema, podría reducir el bienestar social respecto al equilibrio de mercado (asignación basada en el primer principio de Wardrop). Presentamos también un enfoque de asignación de tráfico basado en la maximización del bienestar social (definido a la Bergson-Samuelson). Cuando las funciones de utilidad de los viajeros son lineales, la asignación que maximiza el bienestar social es equivalente a la asignación a costos marginales que minimiza costo total del sistema, pero cuando los individuos presentan utilidades no lineales (tradicionalmente cóncavas debido a los axiomas de no saciedad y de rendimientos decrecientes), ambas diferentes. Mostramos que debido al efecto de la concavidad en las funciones de utilidad individuales, la asignación producto de maximizar el bienestar social debiera ser menos resistido por los usuarios que una asignación a mínimo costo total del sistema. Finalmente demostramos que cuando las funciones de costo de los arcos son lineales, y los costos a flujo libre entre las distintas rutas usadas son iguales, el equilibrio de mercado es simultáneamente el que obtiene los menores costos totales del sistema.Citas
Arnott, R. and Small, K. (1994). The economics of traffic congestion.
American Scientist, 82, 446 - 455.
Beckmann, M., McGuire, C. B. and C. B. Winsten. (1956). Studies in the
Economics of Transportation. Yale University Press, New Haven, CT.
Bell, M.G.H. and Iida, Y. (1997). Transportation Network Analysis. John
Wiley, Chichester, UK.
Bergson, A. (1938). A Reformulation of Certain Aspects of Welfare
Economics', Quarterly Journal of Economics, 52, (2), 310-334.
Boadway, R. and N.Bruce. (1984). Welfare Economics Basil Blackwell,
Cambridge.
Brotcorne, L.; Labbé, M.; Marcotte, P. and Savard, G. (2001). A Bilevel
model for toll optimization on a multicommodity transportation network.
Transportation Science, 35, 345-358.
Button K.J. and Verhoef E.T. (eds.) (1998) Road Pricing, Traffic
Congestion and the Environment: Issues of Efficiency and Social
Feasibility Edward Elgar, Cheltenham.
Easa, S. M. (1991). Traffic assignment in practice: overview and
guidelines for users. Journal of Transportation Engineering, 117, 602-622.
Koh, A.; Shepherd, S. and Sumalee, A. (2009). Second best toll and
capacity optimisation in networks: solution algorithm and policy
implications. Transportation, 36, 147-165.
Marcotte, P. (1983). Network Optimization with Continuous Control
Parameters. Transportation Science, 17, 181-197.
Mun, S., Konishi, K. and Yoshikawa. K. (2003. Optimal Cordon Pricing.
Journal of Urban Economics, 54, 21–38.
Nagurney, A. (2000). Sustainable Transportation Networks, Edward Elgar
Publishing, Cheltenham, England.
Newbery, D. M., (1989). Cost recovery from optimally designed roads.
Economica, 56, 165-85.
Parry, I. W. H. (2002). Comparing the Efficiency of Alternative Policies
for Reducing Traffic Congestion. Journal of Public Economics, 85,333–
Samuelson, P. (1956). Social Indifference Curves. The Quarterly Journal
of Economics, 70, 1-22.
Santos, G. (2004). 2004b. Urban Congestion Charging: A Second-Best
Alternative. Journal of Transport Economics and Policy, 38,345–369.
Shepherd, S. P., and Sumalee. A. (2004). A Genetic Algorithm Based
Approach to Optimal Toll Level and Location Problems. Networks and
Spatial Economics, 4, 161–179.
Smith, M.J. (1979). The marginal cost pricing of a transportation network.
Transportation Research, 13B, 237-242.
Small, K.A. (1992) Urban Transport Economics Harwood, Chur.
Small, K. A. and Gómez-Ibáñez, J. A. (1998). Road Pricing for
Congestion Management: The Transition from Theory to Policy.” In Road
Pricing, Traffic Congestion and the Environment: Issue of Efficiency and
Social Feasibility, edited by K. J. Button and E. T. Verhoef. Cheltenham:
Edward Elgar, 213–246.
Verhoef, E.T. (2002). Second-best congestion pricing in general networks:
heuristic algorithms for finding second-best optimal toll levels and toll
points. Transportation Research, 36B, 707-729.
Wardrop, J. (1952). Some theoretical aspects of road traffic research.
Proceeding of the Institute of Civil Engineers, 2, 325-378.
Yang, H. and Bell, M.G. (1998). Models and algorithms for road network
design: a review and some new developments. Transport Reviews, 18,
-278.
Yang, H. and Meng, Q. (2002). A note on highway pricing and capacity
choice under a build-operate-transfer scheme. Transportation Research ,
A, 659-663.
Yanga, H.; Xua, W. and Heydecker,B. (2010). Bounding the efficiency of
road pricing. Transportation Research, 46E, 90-108.