Identificabilidad de Modelos de Elección Discreta con Mecanismos de Elección Heterogéneos

Autores/as

  • Felipe Gonzalez-Valdes Pontificia Universidad Católica de Chile
  • Juan de Dios Ortúzar Pontificia Universidad Católica de Chile

Palabras clave:

modelos de elección discreta, múltiples heurísticas, racionalidad limitada

Resumen

Analizamos la identificabilidad de modelos que admiten la posibilidad que los individuos tengan diferentes mecanismos de elección, en forma tanto teórica como empírica. Para esto, derivamos una expresión basada en la matriz de información del modelo, que explica cómo la diferencia de comportamiento de cada mecanismo de elección afecta su identificabilidad. Luego, simulamos una población consistente con las heurísticas modeladas sobre un banco de datos de elecciones reales de modo de transporte. Del experimento analizamos si es posible identificar heurísticas de elección distintas del mecanismo de Maximización de la Utilidad (RUM). Concluimos que el mecanismo de elección más identificable del RUM es el de Eliminación por Aspectos (EBA), mientras que el menos identificable es la Minimización del Remordimiento (RRM); la heurística de elección Satisficing parece un caso intermedio. 

Citas

Adamowicz, W.L., & Swait, J.D., 2013. Are food choices really habitual? Integrating habits, variety-seeking, and compensatory choice in a utility-maximizing framework. American Journal of Agricultural Economics 95:17–41.

Araña, J.E., León, C.J., & Hanemann, M.W., 2008. Emotions and decision rules in discrete choice experiments for valuing health care programmes for the elderly. Journal of Health Economics 27:753–769.

Balbontin, C., Hensher, D. a., & Collins, A.T., 2017. Integrating attribute non-attendance and value learning with risk attitudes and perceptual conditioning. Transportation Research Part E: Logistics and Transportation Review 97:172–191.

Chorus, C.G., 2010. A new model of random regret minimization. European Journal of Transport and Infrastructure Research 10:181–196.

Chorus, C.G., Arentze, T.A., & Timmermans, H.J.P., 2008. A Random Regret-Minimization model of travel choice. Transportation Research Part B: Methodological 42:1–18.

Gaudry, M.J.I., Jara-Diaz, S.R., & Ortuzar, J.D.D., 1989. Value of time sensitivity to model specification. Transportation Research Part B: Methodological 23:151–158.

Gilbride, T.J., & Allenby, G.M., 2006. Estimating Heterogeneous EBA and Economic Screening Rule Choice Models. Marketing Science 25:494–509.

González-Valdés, F., & Ortúzar, J. de D., 2017. The Stochastic Satisficing model: A bounded rationality discrete choice model. Journal of Choice Modelling. doi: 10.1016/j.jocm.2017.11.002

Guevara, C.A., 2016. Mode-valued differences of in-vehicle travel time savings. Transportation 1– 21.

Guevara, C.A., Chorus, C.G., & Ben-akiva, M.E., 2016. Sampling of alternatives in random regret minimization models. Transportation Science 50:306–321.

Hess, S., & Stathopoulos, A., 2013. A mixed random utility - Random regret model linking the choice of decision rule to latent character traits. Journal of Choice Modelling 9:27–38.

Hess, S., Stathopoulos, A., & Daly, A., 2012. Allowing for heterogeneous decision rules in discrete choice models: An approach and four case studies. Transportation 39:565–591.

Jara-Díaz, S.R., & Ortúzar, J.D.D., 1989. Introducing the expenditure rate in the estimation of mode choice models. Journal of Transport Economics and Policy 23:293–308.

Leong, W., & Hensher, D., 2012a. Is Route Choice a Matter of Regret Minimisation or Relative Advantage Maximisation? International Conference on Travel Behaviour Research 15–20.

Leong, W., & Hensher, D.A., 2012b. Embedding multiple heuristics into choice models: An exploratory analysis. Journal of Choice Modelling 5:131–144.

McFadden, D., 1981. Econometric Models of Probabilistic Choice, in: Structural Analysis of Discrete Daa with Econometric Applications. pp. 198–269.

McFadden, D., 1973. Conditional logit analysis of qualitative choice behavior, in: Zarembka, P. (Ed.), Frontiers of Econometrics. New York: Academic Press, New York.

McNair, B.J., Hensher, D.A., & Bennett, J., 2012. Modelling Heterogeneity in Response Behaviour Towards a Sequence of Discrete Choice Questions: A Probabilistic Decision Process Model. Environmental and Resource Economics 51:599–616.

Ortúzar, J. de D., & Fernández, J.E., 1985. On the stability of discrete choice models in different environments. Transportation Planning and Technology 10:209–218.

Ortuzar, J. de D., & Willumsen, L., 2011. Modelling Transport. John Wiley & Sons.

Plummer, M., 2016. RJags: Bayesian Graphical Models using MCMC. R package version 4-6.

R Core Team, 2015. R: A language and environment for statistical computing.

Rothenberg, T., 1971. Identification in parametric models. Econometrica 39:577–591.

Simon, H.A., 1955. A behavioral model of rational choice. The Quarterly Journal of Economics 69:99–118.

Tversky, A., 1972a. Choice by elimination. Journal of Mathematical Psychology 9:341–367.

Tversky, A., 1972b. Elimination by aspects: a theory of choice. Psychological Review 79:281–299.

Williams, H.C.W.L., & Ortuzar, J. de D., 1982. Behavioural theories of dispersion and the mis-specification of travel demand models. Transportation Research Part B: Methodological 16:167–219.

##submission.downloads##

Publicado

06-07-2018

Número

Sección

Artículo Sistemas de Transporte