Estimación de matriz origen-destino a partir de datos de tarjetas inteligentes: una revisión bibliográfica
Palabras clave:
tarjeta inteligente, SRE, origen-destino, caracterización de la demandaResumen
Este artículo tiene como objetivo revisar la bibliografía de la aplicación de datos de
tarjetas inteligentes de sistemas de recaudo electrónico – SRE – para la obtención de
matrices origen-destino de viajes en transporte público. Los SREs generan datos de forma
continua e íntegra y pueden substituir la toma de datos en terreno, que son mucho más
dispendiosas y sujetas a errores. Para contextualizar y facilitar la comprensión de los
trabajos, inicialmente son abordados aspectos relacionados a las tecnologías y procesos
de los SER y las ventajas de utilizar sus datos. El proceso de estimación del origen y
destino de los viajes, ya estudiado por varios autores, es abordado en detalle, explicando
las reglas lógicas que han sido exploradas, los resultados obtenidos, sus limitaciones y las
etapas de validación utilizadas. El texto concluye con visiones más amplias sobre el papel
de esta tecnología en el futuro del planeamiento de los sistemas de transporte.
Citas
Attanucci, J., Wilson, N.H.M. (1981) Bus Transit Monitoring Manual: Volume 1: Data Collection Program Design, US
Department of Transportation.
Bagchi, M., White, P.R. (2005) The potential of public transport smart card data. Transport Policy 12, 464–474.
Buneman, K. (1984) Automated and Passenger-Based Transit Performance Measures. Transportation Research Record 992,
-28.
Carvalho, C.H.R. (2003) Panorama da Bilhetagem no Brasil, in: Bilhetagem Automática e Gestão nos Transportes Públicos
- Série Cadernos Técnicos Volume 1 8–20.
Nuñez, C., Munizaga, M., Gschwender, A. (2013) Cálculo de indicadores de calidad de servicio del sistema de transporte
público de Santiago a partir de datos pasivos. XVI Congreso Chileno de Ingenería de Transportes.
Chu, A., Chapleau, R. (2013) Smart Card Validation Data as a Multi-Day Transit Panel Survey to Investigate Individual and
Aggregate Variation in Travel Behavior. En Zmud, J., Lee-Gosselin, M., Munizaga, M.A. y Carrasco, J.A. (Eds.)Transport
Survey Methods: Best Practice for Decision Making. Emerald Goup Publishing Limited 649–671.
Cui, A. (2006) Bus Passenger Origin-Destination Matrix Estimation Using Automated Data Collection Systems. Tesis de
Maestría. Massachusetts Institute of Technology, USA.
Devillaine, F. (2012) Estimación de viajes y actividades en base a sistemas tecnológicos de transporte público. Tesis de
Maestría. Universidad de Chile, Chile.
Devillaine, F., Munizaga, M., Palma, C., Zúñiga, M. (2013) Towards a Reliable Origin-Destination Matrix from Massive
Amounts of Smart Card and GPS Data: Application to Santiago. En Zmud, J., Lee-Gosselin, M., Munizaga, M.A. y Carrasco,
J.A. (Eds.) Transport Survey Methods: Best Practice for Decision Making. Emerald Goup Publishing Limited 695–709.
Dumas, R. (2015) Analyzing Transit Equity Using Automatically Collected Data. Tesis de Maestría. Massachussets Institute
of Technology, USA.
Farzin, J.M. (2007) Summary of fraudulent farecard use patterns in São Paulo’s public transit network.
Farzin, J.M. (2008) Constructing an Automated Bus Origin – Destination Matrix Using Farecard and Global Positioning
System Data in São Paulo, Brazil. Transportation Research Record 2072, 30–37.
Gordon, J.B. (2012) Intermodal Passenger Flows on London’s Public Transport Network. Tesis de Maestría. Massachusetts
Institute of Technology, USA.
Goulet-Langlois, G. (2015) Exploring Regularity and Structure in Travel Behavior Using Smartcard Data. Tesis de Maestría.
Massachusetts Institute of Technology, USA.
Guerra, A.L. (2011) Determinação de Matriz Origem/Destino Utilizando Dados do Sistema de Bilhetagem Eletrônica. Tesis
de Maestría. Universidade Federal de Minas Gerais, Brasil.
Guerra, L., Barbosa, H.M., Kelli, L. (2014) Estimativa de matriz origem/destino utilizando dados do sistema de bilhetagem
eletrônica: proposta metodológica. Revista Transportes 22, 26–38.
Kusakabe, T., Asakura, Y. (2014) Behavioural data mining of transit smard card data: A data fusion apprach. Transportation
Research Part C 45, 179-191.
Lianfu, Z., Shuzhi, Z., Yonggang, Z., Ziyin, Z. (2007) Study on the method of constructing bus stops OD matrix based
on IC card data. 2007 International Conference on Wireless Communications, Network and Mobile Computing, WiCOM,
–3145.
Milkovits, M.N. (2008) Modeling the factors affecting bus stop dwell time: Use of automatic passenger counting, automatic
fare counting, and automatic vehicle location data. Transportation Research Record 2072, 125-130.
Mojica, C. (2008) Examining changes in transit passenger travel behavior through a smart card activity analysis. Tesis de
Maestría. Massachusetts Institute of Technology, MA, USA.
Morency, C., Trépanier, M., Agard, B. (2007) Measuring transit use variability with smart-card data. Transport Policy 14,
–203.
Munizaga, M., Palma, C. (2012) Estimation of a disaggregate multimodal public transport Origin-Destination matrix from
passive smartcard data from Santiago, Chile. Transportation Research Part C Emerging Technologies 24, 9–18.
Munizaga, M., Devillaine, F., Navarrete, C., Silva, D. (2014) Validating travel behavior estimated from smartcard data.
TransportationOrtega-Tong, M.A. (2013) Classification of London’s Public Transport Users Using Smart Card Data. Tesis de Maestría.
Massachusetts Institute of Technology, USA.
Ortúzar, J. de D., Willumsen, L. G. (2011) Modelling Transport. Wiley, Chichester. 2011.
Pelletier, M.-P., Trépanier, M., Morency, C. (2011) Smart card data use in public transit: A literature review. Transportation
Research Part C Emerging Technologies 19, 557–568.
Trépanier, M., Tranchant, N., Chapleau, R. (2007) Individual trip destination estimation in a transit smart card automated fare
collection system. Journal of Intelligent Transportation Systems 11, 1-14.
Vuchic, V.R. (2005) Urban Transit: Operations, Planning and Economics. John Wiley & Sons.
Wang, W., Attanucci, J.P., Wilson, N.H.M. (2011) Bus Passenger Origin-Destination Estimation and Related Analyses Using
Automated Data Collection Systems. Journal of Public Transportation 14, 131–150.
Wilson, N.H.M., Zhao, J., Rahbee, A., (2009) The potential impact of automated data collection systems on urban public
transport planning. En: Wilson, N.H.M., Nuzzolo, A. (Eds.), Schedule-Based Modeling of Transportation Networks: Theory
and Applications. Springer.
Zhao, J. (2004) The Planning and Analysis Implications of Automated Data Collection Systems : Rail Transit OD Matrix
Inference and Path Choice Modeling Examples. Tesis de Maestría. Massachusetts Institute of Technology, USA.
Zhao, J., Rahbee, A., Wilson, N.H.M. (2007) Estimating a rail passenger trip origin-destination matrix using automatic data
collection systems. Computer-Aided Civil and Infrastructure Engineering 22, 376–387.
Zhong, C., Manley, E., Arisona, S.M., Batty, M., Schmitt, G. (2015) Measuring variability of mobility patterns from multiday
smart-card data. Journal of Computational Science 9, 125-130. Research Part C Emerging Technologies 44, 70–79.